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ABSTRACT: Hydrological extremes, in the form of droughts and floods, have impacts on a wide 
range of sectors including water availability, food security, and energy production. Given continuing 
large impacts of droughts and floods and the expectation for significant regional changes projected 
in the future, there is an urgent need to provide estimates of past events and their future risk, 
globally. However, current estimates of hydrological extremes are not robust and accurate enough, 
due to lack of long-term data records, standardized methods for event identification, geographi-
cal inconsistencies, and data uncertainties. To tackle these challenges, this article presents the 
development of the first Global Drought and Flood Catalogue (GDFC) for 1950–2016 by merging 
the latest in situ and remote sensing datasets with state-of-the-art land surface and hydrodynamic 
modeling to provide a continuous and consistent estimate of the terrestrial water cycle and its 
extremes. This GDFC also includes an unprecedented level of detailed analysis of drought and 
large-scale flood events using univariate and multivariate risk assessment frameworks, which 
incorporates regional spatial–temporal characteristics (i.e., duration, spatial extent, severity) and 
global hazard maps for different return periods. This Catalogue forms a basis for analyzing the 
changing risk of droughts and floods and can underscore national and international climate change 
assessments and provide a key reference for climate change studies and climate model evalua-
tions. It also contributes to the growing interests in multivariate and compounding risk analysis.
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Droughts and floods are two extremes of the hydrological spectrum and have a wide 
range of societal impacts. Historically, droughts and floods have cost $596 billion (U.S. 
dollars) in damages in the early twenty-first century (2000–17) (EM-DAT 2018) and have 

affected more than 3.4 billion people during 1995–2015 (UNISDR 2015). Besides these direct 
costs, impacts can propagate into other sectors due to losses of ecosystem services (e.g., 
Palmer et al. 2009; Mora et al. 2018), disruption of global supply chains (e.g., Haraguchi and 
Lall 2015; in den Bäumen et al. 2015; Cottrell et al. 2019), and increased risk mitigation costs 
(e.g., Kreibich et al. 2017). There is also a growing body of literature exploring the effects of 
droughts and floods on human health (e.g., Hajat et al. 2005; Haines et al. 2006; Fernandez 
et al. 2015; Evans 2019), migration (e.g., Perch-Nielsen et al. 2008; Feng et al. 2010; Black 
et al. 2011; Abel et al. 2019), and conflicts (e.g., Gleick 2014; Maystadt and Ecker 2014; Kelley 
et al. 2015; Ghimire et al. 2015), although there is as yet no consensus on the causal linkages 
between these hydrological extremes and their impacts due to the complexity of physical 
and socioecological systems (e.g., Hajat et al. 2005; Adams et al. 2018; Mach et al. 2019). 
Nevertheless, these studies highlight the societal value of an improved assessment of drought 
and flood risk, whose impacts may further increase as a result of climate change and economic 
development. Evidence from climate model projections shows that climate change will lead 
to increased frequency and intensity of droughts (e.g., Sheffield and Wood 2008b; Orlowsky 
and Seneviratne 2013; Trenberth et al. 2014) and floods (e.g., Milly et al. 2002; Pall et al. 2011; 
Field 2012; Hirabayashi et al. 2013; Arnell and Gosling 2016) at regional scales. This poses 
serious challenges to mitigation and adaptation strategies as defined in recent global (IPCC 
2018), continental (e.g., the Fourth National Climate Assessment; Wuebbles et al. 2017), and 
regional (e.g., California’s Fourth Climate Change Assessment) assessment reports.

To this end, there is a need to improve our understanding of current drought and flood 
risks and how they may change in the future under the influence of climate change and hu-
man activities. However, observational hydrological data from, for example, precipitation 
and streamflow gauges are sparse over many parts of the world, are often short term, and 
usually impacted by anthropogenic influences. Consequently, current drought and flood risk 
estimates are often short term and inconsistent, limited to developed nations, and are often 
associated with large uncertainties (Seneviratne et al. 2012). Addressing these challenges 
requires developing a Catalogue of hydrological extremes and their characteristics, which 
should have long-term data records to enable more robust risk quantification than existing 
short-term global drought (e.g., Heim and Brewer 2012; AghaKouchak and Nakhjiri 2012; Hao 
et al. 2014), flood (e.g., Herold et al. 2011; Ward et al. 2013; Brakenridge 2019) and inundation 
(Pappenberger et al. 2012; Fluet-Chouinard et al. 2015; Ji et al. 2018) products. It also needs to 
be spatially and temporally continuous and consistent, so that risk can be quantified glob-
ally, not only for developed regions [e.g., see recent U.S. flood events compiled by Shen et al. 
(2017) and European drought Catalogue by Lloyd-Hughes et al. (2009)] but also for data-poor 
regions (such as much of Africa). Moreover, drought and flood risk should be quantified in 
a consistent way to enable a comprehensive understanding of both extremes to improve risk 

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/25/22 03:16 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M AY  2 0 2 0 E510

assessment and water resources management that can further mitigate impacts. As droughts 
and floods share the same types of interlinked characteristics (e.g., severity, area, duration), 
and potentially linked driving mechanisms, their cooccurrence could contribute to even 
larger impacts than the sum of each individual type of extreme because of the exacerbation 
of human vulnerabilities (e.g., King-Okumu et al. 2018). Therefore, dependence structures 
between the contributing variables should be well represented to avoid the underestima-
tion of the compounding impact that can occur if risk is assessed based on the traditional 
univariate frameworks, which only focus on a single variable (Zscheischler and Seneviratne 
2017; Moftakhari et al. 2017; Hao et al. 2018). In fact, a multivariate risk assessment frame-
work has the advantage to simultaneously consider the interlinkages between different 
impact-contributing factors (e.g., event characteristics or drivers). It allows us to have a more 
comprehensive understanding of the combined impact of extremes and therefore has been 
increasingly recommended by several international guidelines (e.g., European Union 2007).

We are now in a much better position to tackle the above challenges thanks to a series of 
advancements in monitoring, modeling and risk assessment. This includes recent develop-
ment in satellite-based hydrological measurements (e.g., Lettenmaier et al. 2015; Sheffield et 
al. 2018), advances in large-scale land surface and hydrodynamic modeling (e.g., Yamazaki 
et al. 2011; Bierkens 2015) as well as improved risk quantification and event identification 
approaches (e.g., Andreadis et al. 2005; Leonard et al. 2014; He et al. 2017; Hao et al. 2018). 
Leveraging on these advancements, this study aims at developing the first Global Drought 
and Flood Catalogue (GDFC). The GDFC is generated based on 0.25°, long-term (1950–2016) 
and improved land surface and river simulations driven by quality-controlled and consis-
tent meteorological forcings. Although there exists other global-scale drought (e.g., Global 
Drought Information System; Nijssen et al. 2014) and flood (e.g., Dartmouth Flood Observa-
tory; Brakenridge 2019) databases, their short-term data records jeopardize their ability for 
robust risk quantification. In addition, most of them only focus on one type of extreme (either 
droughts or floods) and therefore do not provide a joint picture of how droughts and floods 
evolve together. The GDFC is distinguished from, but also complementary to, existing hazard 
databases from both the univariate and multivariate perspective, ensuring a global-scale and 
robust quantification of these hazards. It could also be used as a reference to evaluate other 
datasets and future changes in droughts and floods.

Overview of approach
The GDFC focuses on droughts and large-scale floods (both pluvial and fluvial). It builds 
upon legacy systems developed previously at global (Sheffield and Wood 2007, 2008a) and 
regional (Sheffield et al. 2014) scales, making use of existing models and datasets, but has 
been enhanced in the following aspects to provide better estimates of the global terrestrial 
hydrological cycle and its extremes (Fig. 1). We first extend the existing long-term global 
meteorological dataset [Princeton Global Forcings (PGF); Sheffield et al. 2006] from 1950 to 
near present (2016), which is also enhanced in its spatial resolution (0.25°) through statistical 
downscaling and corrected for temporal and spatial inconsistencies (see details in appendix A, 
“Enhanced global meteorological forcings” section). This new version (v3) of the PGF is then 
utilized to drive an updated version of the Variable Infiltration Capacity (VIC) land surface 
model (see appendix A, “Enhanced land surface model simulations” section, for details) to 
obtain an improved estimate of soil moisture and runoff variability that is key to understanding 
changes in drought and flood (pluvial and fluvial) risk. We also implement a newly developed 
global-routing and hydrodynamic model Catchment-Based Macro-Scale Floodplain model 
(CaMa-Flood) to explicitly characterize flood stage (e.g., inundation area and water level) 
and river discharge (see appendix A, “Enhanced routing model” section, for model details 
and Fig. S1 in the online supplemental material for streamflow validation results; https://doi.
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org/10.1175/BAMS-D-18-0269.2). Related hydrological variables (e.g., 3-month accumulative 
precipitation from the PGFv3 and monthly soil moisture simulated from VIC) are then trans-
formed to standardized indices (see appendix B, “Standardized indices” section) to identify 
drought and pluvial events at the pixel level based on run theory (appendix B, “Run theory to 
estimate drought and pluvial (defined as large-scale and long-term wet extreme) frequency” 
section). Given the dynamic nature of hydrologic extremes, a joint spatial–temporal analysis 
is performed to investigate how droughts and pluvials propagate, merge (two events merging 
into one) or break up (an event splitting into two or more events separated in space) through 
time and space. We utilize a severity–area–duration (SAD) clustering algorithm (appendix 
B, “Clustering algorithm for drought and pluvial identification” section) to identify spatially 
contiguous drought and pluvial events over six continents (excluding Antarctica) and examine 

Fig. 1. Schematic of the overall framework illustrating three major steps to develop the Global Drought 
and Flood Catalogue (GDFC). Step 1 is generating long-term and consistent hydrologic datasets using 
state-of-the-art physically based hydrologic modeling platform that includes hybrid meteorological forc-
ings (PGFv3), improved land surface modeling (VIC), and enhanced hydrodynamic model (CaMa-Flood). 
Step 2 is robust quantification of drought and flood/pluvial risk based on a suite of statistical postpro-
cessing procedures, including the statistical transformation of hydrologic data into standardized indices 
for drought and large-scale flood identification, spatial and temporal clustering analysis, univariate risk 
analysis, and multivariate dependence modeling. Step 3 is developing a meta-database to deliver products 
and Catalogues (e.g., drought and pluvial inventory at the continental scale, global risk maps for different 
types of hydrological extremes, and an online web interface) that enables dissemination of knowledge 
and data to the wider scientific community.
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the stationarity of their evolution through the estimation of their time-varying frequency (see 
appendix B, “Stationarity of drought and pluvial events” section, for details). Characteristics 
(i.e., frequency, spatial extent, severity) of drought and pluvial events (and their associated 
flooding) are synthesized into a Catalogue with a particular focus on characterizing the 
long-term variability in risk from both a univariate and multivariate perspective (appendix 
B, “Copula-based risk analysis” section).

Deliverables
To enable dissemination of knowledge and data to the wider scientific community and en-
able feedback, a publicly accessible Internet data portal and web interface (http://hydrology 
.princeton.edu/data/hexg/GDFC/) has been developed. This delivers relevant products, including 
continental drought and pluvial Catalogues, global-scale drought and flood (pluvial and flu-
vial) risk maps, long-term meteorological and agricultural standardized indices, the underly-
ing meteorological forcings, and land surface hydrological fluxes and states (Table 1), which 
can be used to underpin climate services (e.g., Hewitt et al. 2012; Goddard 2016; Haigh et al. 
2018). More specifically, these datasets could be utilized by the humanitarian community, 
development funding agencies and insurance companies for risk analysis, investment plan-
ning, and targeted early warning especially over developing countries (e.g., in Africa) with 
sparse data and low coping capacities.

Results
Stationarity and trend of spatially contiguous drought and pluvial frequency. Acknowl-
edging the dynamic nature of droughts and pluvials and their interrelated characteristics 
(e.g., severity, area, and duration), it is necessary to investigate their variation and trends at 

Table 1. Data products included in the Global Drought and Flood Catalogue.

Products Types/variables/indices Data source and description Attributes Format

Catalogue

Drought inventory  
(agricultural and meteorological)

SAD clustering algorithm
Event ID, date, duration, 
spatial extent, severity 

(six continents)
txt, csv

Pluvial inventory  
(agricultural and meteorological)

Hazard maps

Drought frequency  
(agricultural and meteorological) Return period calculated from 

standardized indices

0.25°; duration with 
1–3, 4–6, 7–12, and >12 

months
netCDF4

Pluvial frequency  
(agricultural and meteorological)

Fluvial risk maps

Annual maximum inundation 
fraction and daily streamflow 
estimated from CaMa-Flood 

simulations and GEV distribution

0.25°; 5-, 10-, 20-, 50-, 
75-, 100-, 200-, and 
500-yr return periods

Standardized indices
Standardized precipitation index

Precipitation from PGFv3 
(1950–2016)

0.25°; SPI1, SPI3, SPI6, 
SPI12; daily, monthly, 

yearly netCDF4

Soil moisture percentile
VIC land surface model 

(1950–2016)
0.25°; daily,  

monthly, yearly

Meteorological forcings

Precipitation, 2-m temperature, downward 
surface shortwave radiation, downward 
surface longwave radiation, 2-m specific 
humidity, surface pressure, 10-m wind

PGFv3 (1948–2016)
0.25°; 3-hourly, daily, 

monthly, yearly
netCDF4

Land surface hydrological 
fluxes and states

Evapotranspiration, runoff, soil moisture at 
different layers (0.1 and 1 m), streamflow, 

inundation area and fraction

VIC land surface model and 
CaMa-Flood hydrodynamic model 

(1950–2016)

0.25°; daily,  
monthly, yearly

netCDF4
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the event level. We count the occurrence of spatially contiguous droughts and pluvials using 
the SAD technique and examine the stationarity of event frequency based on time-varying 
occurrence rate and associated long-term trends through a nonparametric Gaussian kernel 
(Fig. 2). Globally, there are 453 and 476 short-duration meteorological droughts and pluvials, 
respectively, with a contiguous area larger than 375,000 km2 from 1950 to 2016. Fewer (200) 
medium-duration events are identified, indicating that prolonged hydrological extremes have 
less persistence and tend to break into short-term events during their evolution. This is also 
evidenced by the soil moisture percentile (SMPct)-based analysis with a reduced number (179) 

Fig. 2. Time-varying occurrence rates (yr-1; bold lines) and 90% confidence bands (shaded area) for spatially 
contiguous short-duration (D4–6, 4–6 months) and medium-duration (D7–12, 7–12 months) drought (red color) 
and pluvial (blue color) events during 1950–2016 identified through the SAD clustering approach using the 
3-month standardized precipitation index (SPI3; left side of each panel) and soil moisture percentile (SMPct; 
right side of each panel). The upward and downward arrows in each panel indicate statistically significantly 
increasing and decreasing trends, respectively, based on different levels of significance (represented by dif-
ferent numbers of stars). We divide the global land surface (excluding Greenland and Antarctica) into six 
continents (i.e., North America, Europe, South America, Asia, Africa, and Oceania) based on Sheffield et al. 
(2009) and mask out extremely dry regions with annual rainfall less than 100 mm.
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of medium-duration droughts and consequently an increased number of short-term droughts 
(570). Among the six continents, Asia has the largest number of occurrences of both short- and 
medium-duration droughts and pluvials, followed by North America, whereas Oceania has 
the smallest number. This is mainly due to the domain size.

For meteorological extremes [based on 3-month standardized precipitation index (SPI3)], 
globally the frequency of short-term droughts has decreased significantly (p < 0.01), from more 
than eight events per year in the 1950s to roughly six events per year in the 1990s, and then 
stabilizes afterward. There is no statistically significant trend in short-term pluvial frequency 
over the whole study period, but it increases slightly in the first half of the study period and 
decreases dramatically in the second half, with peak occurrence rate around eight times per 
year during the 1980s. Such an out-of-phase relationship in the long-term trend between 
short-term droughts and pluvials is also shown in other continents, including North America 
and Asia, although the decadal fluctuation in event frequency has been dampened due to the 
large size of the region. Short-term meteorological droughts occur less frequently (p < 0.05) 
in recent decades over South America, which is consistent with the decreased probability of 
dry extremes over northeastern South America (Schubert et al. 2016). In contrast, short-term 
meteorological pluvials have a slightly increasing trend over Oceania, although with a reduced 
degree of statistical significance (p < 0.1). For medium-duration events, droughts and pluvials 
occur roughly half as frequently as short-term events and with reduced decadal variability. 
We observe that the occurrence of medium-duration pluvials has become more frequent in 
recent decades over Europe and South America (p < 0.05), whereas medium-duration droughts 
occur more frequently over Asia (p < 0.05). Over Africa, the robust increasing trend of medium-
duration drought occurrence is coincident with the decreased frequency in medium-duration 
pluvials. This is consistent with previous findings arguing that Africa is moving toward a 
drier climate at regional (Liebmann et al. 2014; Diem et al. 2014) and continental (Dai et al. 
2004b; Dai 2011) scales.

The soil moisture–based analysis illustrates a complementary picture of drought and 
pluvial occurrence. Compared to the SPI3-based analysis, frequency estimation using SMPct 
shows an overall reduced decadal variability and a more synchronous and coherent temporal 
evolution between droughts and pluvials, as reflected at both global and regional scales. 
However, over Africa and Oceania, we find opposite temporal trends between short-duration 
droughts and pluvials, with a robust decreasing trend in one extreme contemporaneous with 
robust increasing frequency of the other. Such patterns over Africa show the vulnerability 
of this region to both dry and wet extremes, due to the high variability in soil moisture that 
is partly influenced by the intertropical convergence zone (ITCZ) seasonal footprint (Shef-
field and Wood 2007). Oceania experiences a wetting trend in soil moisture, resulting in 
more frequent pluvials and less frequent droughts (Sheffield and Wood 2008a). We also find 
that, at the global scale, the frequency of short-duration extremes has significantly higher 
magnitude estimated from SMPct compared to that estimated from SPI3, which is mainly 
attributed to the difference in Asia and North America. Regardless of what event index is 
used, the estimated trends are consistent between SPI3 and SMPct for medium-duration 
droughts over North America, medium-duration pluvials over South America and Africa, 
and short-duration pluvials over Oceania. This highlights the dominant role of changing 
precipitation that leads to more frequent meteorological extremes and can translate to ag-
ricultural extremes through the filtering of land surface hydrologic processes. For regions 
lacking such consistency between SPI3 and SMPct, the complexity of hydrologic processes 
(e.g., soil moisture memory effects, snow processes, land–atmosphere coupling) and how 
they respond to long-term changes in precipitation needs further investigation to improve 
our understanding of drought and pluvial occurrence. In summary, the detected trends of 
drought and pluvial frequency are geographically variable and may not be consistent or 
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statistically robust depending on what index is used. Frequency differences between short- 
and medium-duration extremes highlight the need to improve our understanding of how 
prolonged events persist or break up under changing atmospheric conditions and chang-
ing hydrological processes, such as local land–atmospheric feedbacks (Guillod et al. 2015; 
Miralles et al. 2019) and large-scale teleconnections with sea surface temperatures (Pal and 
Eltahir 2002; Wang et al. 2015; Sheffield et al. 2009) that may lead to self-intensification 
and self-propagation of extreme events.

Continental inventory of drought and pluvial episodes. SAD AnAlySiS of continentAl 
DroughtS AnD pluviAlS. Figure 3 shows all agricultural drought and pluvial events with a 
3-month duration. For small-area extent, SAD curves overlap with each other, because dif-
ferent events tend to have similar severity (these are usually localized events). As fraction 
of total area of the continent increases, the SAD curves start to diverge, which is due to the 
increased spatial variability of soil moisture as drought expands to a larger area. Out of the 
six continents, droughts and pluvials identified in Asia generally have smaller fractions of 
spatial coverage (less than 20%), but the absolute area could be large given the domain size. 
In contrast, extremes that occurred in Oceania usually cover a much larger area (e.g., the 
maximum spatial coverage can be more than 80% of the total area). The reduced number 
of occurrences in this region is largely due to the small domain size, and the SAD curves 
are more dispersed compared to other regions. These findings also hold true for SPI3-based 
analysis (Fig. S2). As expected, longer-duration events (6 and 9 months) are rarer (fewer lines 
in Figs. S3–S6). However, these longer-duration events move and propagate to other places 
and therefore become more spatially extensive (e.g., maximum fraction area in Figs. S5 and 
S6 is larger than that in Fig. 3 and Fig. S2).

To further explore the relationship between droughts and pluvials, we slice the 2D SAD 
curves (Fig. 3 for example) within a certain window (horizontal or vertical) and calculate 
the cumulative distribution function (CDF) conditioned upon area and severity for both 

Fig. 3. SAD curves showing the relationship between severity and spatial extent (represented by fraction 
area) for 3-month droughts (left side of each panel) and pluvials (right side of each panel) based on SMPct. 
Each line represents a specific event that is spatially contiguous given the specified duration (3 months 
here). Severity decreases as droughts and pluvials expand to a larger area.
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SMPct- (Fig. 4, Figs. S7 and S8) and SPI3-based index (Figs. S9–S11). We group events into 
large (fraction area ≥ 30%) and small (fraction area ≤ 10%) area as well as high (≥0.9) and low 
(≤0.8) severity categories. We conduct a two-sample Kolmogorov–Smirnov (K-S) test to exam-
ine whether the CDF between droughts and pluvials is statistically significantly different. In 
North America, results show that large-area pluvials are less severe than large-area droughts, 
which holds true for both SMPct- and SPI3-based analysis. However, only the SMPct-based 
results show that smaller-area pluvials are more severe. Moreover, the SMPct-based analysis 
indicates that low-severity pluvials are usually larger than low-severity droughts. However, 
from the meteorological perspective (based on SPI3), pluvials usually have smaller spatial 
extent than droughts (except for the low-severity pluvials with 3-month duration). In Europe, 
short-duration pluvials tend to be less severe than short-duration droughts (e.g., Fig. S9). 
For longer-duration events (i.e., 9 months), large agricultural pluvials (Fig. S8) and small 
meteorological pluvials (Fig. S11) tend to be more severe than droughts. In terms of event 
size, pluvials are generally smaller than droughts in this region, but the significance level 
of the difference varies with duration and severity category. In Asia, meteorological pluvials 
are more severe but slightly smaller compared to meteorological droughts for all durations 
(Figs. S9–S11). For agricultural extremes, statistical differences between droughts and pluvi-
als are only evident for 9-month-duration event (Fig. S8). For such prolonged events, pluvials 
tend to be more spatially extensive and severe than droughts. Pluvials that occurred in South 
America and Africa are less severe than droughts. With a few exceptions (e.g., 3-month low-
severity agricultural extremes and 6-month meteorological extremes), pluvials also tend to 
cover smaller areas than droughts. Oceania pluvials extend to have larger areas than droughts 
and also tend to be more severe.

Among all the drought and pluvial events, the top five events ranked by duration and spa-
tial extent are summarized in Figs. 5 and 6 and Table S1 for each continent. For agricultural 
extremes, North America has the longest-duration (97 months) drought lasting from June 1951 
to June 1959, which also turns out to be the most spatially extensive one with peak extent cov-
ering 83.2% of the total area. For pluvials, the top two longest episodes occurred in Asia (i.e., 

Fig. 4. Comparison of the empirical cumulative distribution function (CDF) between the 3-month droughts 
and pluvials conditioned on area (left side of each panel) and severity (right side of each panel) across six 
continents using SMPct as the event index. The two-sample K-S test is performed for each pair to examine 
whether the differences in CDF between droughts and pluvials are statistically significant. The number 
of stars represents the level of significance.
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Fig. 5. Timeline of the top five drought (pink color) and pluvial (blue color) episodes ranked 
by duration. These events are detected by the SAD clustering algorithm using SPI and SMPct. 
See details in Table S1.

Fig. 6. As in Fig. 5, but events are illustrated based on the rank of the spatial extent.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/25/22 03:16 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M AY  2 0 2 0 E518

81 months from 1965 to 1972 and 61 months from 1959 to 1964). The most spatially extensive 
episode is found in Oceania from April 1973 to November 1974 with the highest coverage up 
to 92.4%, which also has the longest duration (20 months) over Oceania. For meteorological 
extremes, droughts with the longest duration again occur over North America with a similar 
timing (in the 1950s) compared to the SMPct-based results, but with a much shorter duration 
(35 months). Longer-duration pluvials are mainly found in Asia during more recent decades 
(after 2000) compared to those long-lasting episodes occurring in earlier periods (from the 
1950s to the 1970s) as detected from SMPct. Out of the six continents, Oceania has the largest 
meteorological droughts and pluvials, which also tend to cover a larger area than agricultural 
extremes.

continentAl SAD envelope curveS for DroughtS AnD pluviAlS. Based on all individual 
SAD curves (e.g., Fig. 3 and Figs. S2–S6), we extract the maximum bound of severities for 
a given areal fraction to form a set of SAD envelope curves with different durations (Fig. 7 
for droughts and Fig. 8 for pluvials based on SMPct). These envelope curves allow us to 
construct a continental profile of the most severe droughts and pluvials. We find that, for 
prolonged (i.e., 9-month duration) events, severe droughts tend to have larger spatial ex-
tent than severe pluvials for both SMPct- and SPI3-based estimates. For short-duration (3 
and 6 months) events, severe droughts have an overall higher severity than severe pluvials 
for both agricultural (except Africa and Oceania) and meteorological type. Comparison 
between agricultural and meteorological extremes (Figs. 7 and 8 vs Figs. S12 and S13) 
indicates that SMPct-based SAD envelope curves tend to be less stretched out compared 
to SPI3-based envelope curves, especially for short-duration events. This is also true even 
for smaller-area events, as we can see clear differences in severity across SAD envelope 

Fig. 7. Continental SAD envelope curves for drought events with different durations (3, 6, and 9 months, 
represented by different markers). For a particular duration (e.g., 3 months), the curve is generated by 
selecting the maximum bound of severities from all drought events (e.g., left side of each panel in Fig. 
3). Each curve can be made up of different episodes (represented by different colors), as some events are 
more severe for large areas while others could be more severe for localized events (with smaller areas).
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curves with different duration. However, the severity of short-duration events tends to 
overlap with each other based on SMPct. In addition, SPI3-based SAD envelope curves 
tend to consist of fewer event episodes compared to SMPct, except for droughts in North 
America and Africa, as well as pluvials in North America and Oceania. This implies that 
meteorological extremes tend to be dominated by single severe episodes affecting larger 
areas, whereas agricultural extremes tend to be made up of several severe events that 
have limited spatial influence and might occur in different periods or regions. In addition, 
drought and pluvial envelopes estimated from SPI3 have higher severity, larger extent, and 
shallower slope compared to those based on SMPct, although with a few exceptions (e.g., 
all events over North America, 9-month droughts over Europe, 3–9-month pluvials over 
Europe), indicating a lower decreasing rate of severity with increasing area. This further 
implies that as droughts and pluvials develop, meteorological extremes tend to persist over 
a larger domain while maintaining a higher severity compared to agricultural extremes. 
Acknowledging the geographical variations, we discuss major drought and pluvial events 
for each continent in the following sections.

Meteorological droughts and pluvials. This section documents major droughts and pluvials 
for each continent from the meteorological perspective (Figs. S12 and S13). In North America, 
the top two longest droughts (1952–55, 1955–58; see Table S1 and Fig. 5) contribute to the major-
ity of the SAD envelope curves, especially for large fraction of spatial extent. For smaller extent 
and short duration, drought envelopes are mainly made up from the 1976/77 event. These 
results are consistent with the depiction of agricultural droughts (Fig. 7) with similar location 
and spatial coverage. Pluvial envelope curves in this region are steeper compared to drought, 
and the maximum spatial extent is also reduced. The longest-duration pluvial during the 
1960s (1961/62; Table S1) dominates the 9-month envelope curve for smaller extent, whereas 
the 1990s (1992/93 and 1996/97) pluvials (Seager et al. 2005) dominate envelope curves with 
larger extent, which also rank the second and third in terms of spatial extent (Table S1 and 
Fig. 6). Note that the 1992/93 event appears in both SPI3- and SMPct-based envelope curves, 

Fig. 8. As in Fig. 7, but for large-scale pluvial events.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/25/22 03:16 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M AY  2 0 2 0 E520

but the SMPct-based pluvial event has longer duration (i.e., continues to March 1994) likely due 
to soil moisture memory. European drought envelope curves are dominated by the top three 
largest droughts [Table S1 and Fig. 6; for example, the 1953/54 event covering central Europe 
(Briffa et al. 1994) and the 1970s event over British Islands and central Europe (Green 1977; 
Hannaford et al. 2011)], whose maximum spatial coverage can reach to 75%. As for pluvials, 
the envelope curves consist of more spatially disconnected events that span a smaller extent 
compared to droughts. Notable pluvials include the most severe episode over the United King-
dom during 2012/13 (Kendon and McCarthy 2015) and a more recent (2015/16) episode across 
the United Kingdom and Ireland (McCarthy et al. 2016). In Asia, the most spatially extensive 
drought (1975–77) occurred over Kazakhstan and western Russia (Kazhydromet 2006; Schubert 
et al. 2014), which is also the longest, contributing to the tail of the envelopes. The longest 
and largest pluvial identified in this region occurs more recently (2012–16; Table S1), but this 
event contributes to the envelope curve only at very small extent. The majority of the pluvial 
severity envelopes are made up of the 1966/67 event over northern Russia and 2000–02 (the 
second largest) pluvial over Kazakhstan (Ta et al. 2018). According to the SAD envelope curve in 
South America, the fourth largest drought (2015/16; Jiménez-Muñoz et al. 2016; Erfanian et al. 
2017) is also the most severe one for almost all the 3- and 6-month droughts. Interestingly, the 
longest-duration meteorological pluvial (1973–75) dominates almost the entire SAD envelope 
curves for all durations, occurring at similar locations compared to the 1973/74 agricultural 
type pluvial (Fig. 8). In Africa, the largest and longest meteorological droughts all occur dur-
ing the 1980s and 1990s (consistent with those agricultural droughts), among which the top 
three largest ones (two in 1983/1984, 1991/1992) dominate the envelopes. Similarly, pluvial 
envelope curves are dominated by the top two longest (1961/62, 1967/68) and largest (1961/62, 
1951/52) (Hoerling et al. 2006) episodes. Compared to other continents, severe droughts and 
pluvials in Oceania have much larger spatial extent, which can cover up to 90% of the total 
continents. The 1965 and 2002/03 droughts (Mpelasoka et al. 2008) dominate 3- and 9-month 
envelope curves, respectively, whereas points on the pluvial envelope curves come almost 
entirely from the largest and longest pluvial (1973/74).

Agricultural droughts and pluvials. In North America, the 1950s drought (1951–59, Cook et al. 
1999; Sheffield et al. 2009) dominate the 6- and 9-month SAD envelope curves, especially for 
larger spatial extents (covering most of Canada and the central United States), whereas the 
1968–71 drought over northeastern United States and 1976/77 drought over central Canada 
and the northern United States (Cook et al. 1999; Keyantash and Dracup 2004) are the most 
severe for smaller extents and shorter durations. For pluvials, most severe episodes occurring 
in the 1980s dominate the envelope curves. For example, the 1981–84 pluvial is the worst for 
large extents up to 50% fraction (covering the Great Plains, the western United States, and 
Canada), whereas the 1984–89 pluvial is the worst for smaller extents. Note the almost identi-
cal pluvial envelopes for 3- and 6-month durations, which indicates that the 6-month events 
remain at high severity as they propagate. In Europe, the 1953/54 drought (over much of cen-
tral Europe) is the most severe for 3-month duration (Briffa et al. 1994). Almost at the same 
time (1952–54), a severe pluvial event occurred over northwestern Europe, which dominates 
a large proportion of the 3- and 6-month SAD envelope curves. Pluvials that occurred during 
recent periods (e.g., 2012/13 and 1998/99) over northern Europe are the most spatially exten-
sive, with coverage up to 60% of the total area. Different from other continents, drought and 
pluvial envelope curves of Asia are generally inseparable and cover a much smaller fraction 
with much steeper slopes. Part of this could be due to the large size of the continent, which 
has more variable climate and land surface conditions that allow droughts and pluvials to 
split more easily and rapidly and potentially more difficult to persist. Notable events include 
the 1983–87 Siberian drought (Sheffield et al. 2009) and 2007/08 droughts over Middle East 
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(Trigo et al. 2010; Barlow et al. 2016) and northern China, which dominate the SAD envelope 
curves for smaller and larger extents, respectively. Following the 1983–87 drought, wet condi-
tions lead to an almost 5-yr (1987–91) pluvial covering northern China (Qian and Zhu 2001; 
Qian et al. 2003), central Mongolia and central Russia. Although this pluvial does not have 
the longest duration (Table S1), it is the most severe one in Asia for both smaller and larger 
extents. In South America, the latest 2015/16 Amazon drought (Jiménez-Muñoz et al. 2016; 
Erfanian et al. 2017) dominates the envelope curve for all durations, especially for large ex-
tents. A 7-month drought that occurred in 1985 has the highest severity among all the short-
duration and small-extent events. For pluvials, the envelope curves are made up of more 
individual episodes in this continent, especially for smaller events. For larger extents, the 
1973/74 pluvial over Peru, northern Brazil and Argentina (Compagnucci et al. 2002) dominates 
the 6- and 9-month SAD curves. In Africa, droughts are dominated by events that occurred 
in the 1980s and 1990s, with the 1984/85 drought (Tarhule and Lamb 2003; Dai et al. 2004a; 
Sheffield et al. 2009; Zhan et al. 2016) being the most severe one across almost the full range 
of spatial extent and for almost all durations. In contrast, severe pluvials in this continent 
mainly occurred over the Sahel during early 1950s (Folland et al. 1986) and over central Africa 
during the 1960s–70s (Laraque et al. 2001). Compared to other continents, Oceania has the 
smallest slope of severity for both pluvials and droughts, but with the largest possible spatial 
extent up to ~80% (although this is relative to the arid and semi-arid conditions across much 
of the continent). Dominant and widespread droughts mainly occur in the 1960s (White et al. 
2003; Mpelasoka et al. 2008), whereas the widespread 1973/74 pluvial (Plummer et al. 1999) 
contributes almost the entire envelope curve.

Univariate risk analysis of droughts and pluvials. We use run theory to estimate the fre-
quency of drought and pluvial events with different duration categories (short and medium 
term) and generate both agricultural-type (based on SMPct; Fig. 9) and meteorological-type 
(based on SPI3; Fig. S14) global hazard maps (represented by return periods). Overall, the 
spatial distribution of event occurrence is similar between droughts and pluvials, albeit 
with slight local differences, indicating a general equal frequency of these two extremes 

Fig. 9. Maps showing the return period of large-scale (left) drought and (right) pluvial events with (top) 
short-term (4–6 months) and (bottom) medium-term (7–12 months) duration based on SMPct.
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over a long period (about seven decades), which is consistent with previous regional 
studies (e.g., Bhalme and Mooley 1980). This pattern is within our expectation as event 
indices have been standardized and the thresholds (below 20%/above 80%) that define 
droughts/pluvials are symmetrical. Differences will occur spatially and between drought 
and pluvial because of differences in the temporal characteristics of individual events. We 
find that short-duration agricultural-type droughts and pluvials occur more frequently than 
medium-duration events over North America, Europe, Central Asia, Southeast China, the 
northwestern part of South America, southern Africa, and central Australia, where climate 
is more variable. In contrast, high-frequency, medium-duration droughts and pluvials 
based on SMPct are mainly found over high latitudes, including northern Canada and 
Siberia, due to persistent anomalies of soil moisture in cold seasons because of freezing 
temperatures. These medium-duration agricultural extremes also have high frequency 
over northeastern and central China, the Sahel, and the western Andes. Such spatial 
heterogeneity of event frequency is less captured in SPI3-based analysis, highlighting the 
important role and necessity of accounting for the filtering processes of the land surface 
in drought and flood/pluvial hazard assessment.

Multivariate risk analysis of droughts and pluvials. As properties of droughts/pluvials are 
inherently and stochastically correlated, frequency analysis should consider their coupled 
characteristics (i.e., severity, area, and duration) and heterogeneous dependence structures 
within a suitable multivariate setting, instead of using the conventional univariate frame-
work. From the risk assessment perspective, this is important because not accounting for 
the multivariate nature of these extremes can lead to an underestimation of their combined 
impact. To avoid this, we perform probabilistic copula analysis (see appendix B, section 
“Copula-based risk analysis”) to estimate the joint return period of paired properties of se-
verity and area, and focus on medium-duration (≥6 months) droughts/pluvials since these 
events may have larger impact on water resources management. This enables us to quantify 
drought and pluvial risks as well as to accommodate their commonalities and differences 
in a probabilistic and consistent way. We use two examples over Africa (Fig. 10) and North 
America (Fig. S15) to illustrate the importance of considering the dependence structure of 
event characteristics for risk assessment. Strong asymmetric and tail dependence is evi-
dent, where data points are clustered toward the upper-left corner (high severity but small 
extent, especially in Fig. S15). As droughts/pluvials become more spatially extensive, the 
dependence between severity and area decreases due to increased spatial variability of soil 
moisture. Such reduced correlation leads to a wider spread of level curves between different 
return periods (RPs), especially in North America (Fig. S15). Differences in RP-level curves 
also exist between SMPct- and SPI3-based analysis, indicating that meteorological and 
agricultural types of extremes have different risks even for events with the same severity, 
area, and duration. This further reinforces the necessity to consider the joint dependence 
structure between different variables and for different types of extremes. Results show that 
SMPct-based RP-level curves are generally higher than those based on SPI3, which means 
agricultural extremes have smaller return periods than meteorological extremes given the 
same magnitude of severity and area. This implies a higher likelihood of occurrence for 
agricultural extremes and therefore higher risks, because of the strong dependence between 
SMPct-based severity and spatial extent, which is likely due to the soil moisture memory 
effect. Similar analysis can be applied to examine how risk differs between droughts and 
pluvials. In Africa, pluvials have a lower likelihood of occurrence compared to droughts 
as can be seen from the downward shift of pluvial RP-level curves (Fig. 10). However, such 
a difference is subtle in North America (Fig. S15), indicating commensurate risks between 
droughts and pluvials.
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The joint frequency analysis indicates that it is not necessary for all characteristics of 
droughts/pluvials to be extreme such that their compound impact is extreme. For instance, 
the 1990/91 meteorological drought in Africa (Fig. 10b) is not the most severe one if risk is 
assessed based on either severity or area independently. However, the joint return period of 
this drought is larger than 100 years indicating a low probability (less than 0.01) of occurrence 
if severity and area are considered simultaneously. Considering such compound impact, the 
1961/62, 1973/74, and 1976 pluvials (Fig. 10c) are exceptional with no historical precedent in 
their severity and area extent. Such events, on average, should occur within an interval of 
more than 100 years. But, in reality, they occur within a time period of 15 years and therefore 

Fig. 10. African (a),(b) droughts and (c),(d) pluvials detected from SAD (red and blue colors) and randomly 
permuted through vine copula (gray color) based on (left) SMPct and (right) SPI3. Isolines denote the 
conditional bivariate return periods (i.e., 5, 20, 100 years) showing a set of possible realizations of area 
and severity that share the same probability. All events have a minimum duration of 6 months.
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may cause more devastating impact. Similar pairs of events (1976 and 1978 pluvials) are also 
identified based on SPI3 (Fig. 10d). This situation can be even worse if exceptional droughts 
and pluvials follow each other over a short period of time, which can magnify the impact of 
individual drought or pluvial events, and puts more pressure on emergency preparedness 
and disaster response. For instance, the exceptional 1988 pluvial in North America (Fig. S15d) 
occurred on the back of the continent’s exceptional 1987 drought, challenging water resources 
planning and management especially for reservoir operations.

Summary and discussion
This study provides a new panoptic view of both pixel-level and event-level drought and flood 
(pluvial and fluvial) risks through the development of the Global Drought and Flood Catalogue 
(GDFC). The GDFC is developed based on enhanced global hydrological model simulations with 
new meteorological forcings (PGFv3), new model processes (VIC and CaMa-Flood), and higher 
spatial resolution (0.25°). Datasets in the GDFC are analyzed to quantify the spatial–temporal 
characteristics (including severity, spatial extent, and duration) of large-scale drought and 
pluvial events with a particular focus on characterizing the long-term trend and variability in 
risk from both univariate and multivariate perspectives. Additional fluvial (inundation and 
streamflow) risk maps are also included in the GDFC (see details in the first section and Figs. 
S16 and S17 in the supplemental material). It should be noted that our estimates are focused 
on large-scale dry and wet extremes and by no means capture small-scale flooding (e.g., as 
compiled by the Dartmouth Flood Observatory; Brakenridge 2019). Nevertheless, this Cata-
logue facilitates our understanding of the changing behavior of these hydrologic extremes 
and can be used for analysis of individual events, their drivers and impacts, risk assessment 
of different types of events, and as a benchmark for model evaluation. Here we only focus on 
the hazard component of risk, but this is a fundamental component of the full-impact risk 
assessment that also incorporates vulnerability and exposure. The following findings are 
worthy of emphasis and exploration in future work.

Commonalities and differences between droughts and pluvials. Although numerous 
studies exist on drought and flood risk, most of them treat drought and flood separately. 
Development of the GDFC enables the study of the commonalities and differences between 
these two types of extremes in a comprehensive and systematic way. At the pixel level, 
we find that long-term drought and pluvial frequency have symmetric spatial patterns, 
which is mainly due to the definition of extremes, although geographical difference exists. 
At the event level, the stationarity of drought and pluvial occurrence is more complex, 
depending on the index type (whether precipitation driven or soil moisture driven), event 
duration (short term vs long term), and geographical location. Globally, the occurrence 
rate of short-term meteorological droughts has decreased significantly, while there is no 
robust trend detected for short-term meteorological pluvials. Agricultural type droughts 
and pluvials tend to be more temporally coherent with a dampened decadal variability 
compared to meteorological extremes. Through a large sample of individual drought 
and pluvial episodes, we are able to examine whether droughts are statistically different 
from pluvials in terms of area and severity, although conclusions vary across continents. 
Further consideration of the joint dependence among the multivariate characteristics (i.e., 
severity, area, and duration) indicates that both droughts and pluvials have strong and 
asymmetric dependence between severity and areal extent. Given the same compound 
impact (e.g., same magnitude of severity and area), pluvials have a lower chance of 
occurrence than droughts in Africa, but such difference is subtle in North America. These 
diagnostic findings together with a large number of event-based drought and pluvial epi-
sodes in the GDFC can enable a more detailed analysis through case studies to advance 
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our understanding of the underlying physical mechanisms that drive the occurrence and 
changes in these extremes.

Challenges and future directions. The impact of drought and flood hazards on societies is 
large and is likely to further intensify under anthropogenic climate change and future human 
activities. Reducing impacts requires bridging the gap between large-scale hazard mapping 
and local-scale impact assessment, and integrating this with the knowledge and activities of 
users on the ground, including water resources managers and meteorological, hydrological, 
and disaster response agencies. The interface of these agencies and region-specific manage-
ment objectives could enable the diverse use of the GFDC in decision-making and impact 
assessment. For instance, disaster response agencies could map the GDFC hazard informa-
tion to the management space that is more relevant to reservoir managers’ decision-making, 
such as flood risk management, water supply, and hydropower generation. From the long-
term-planning perspective, decision-makers can take historic records in the GDFC to examine 
whether existing engineering design (e.g., reservoir storage based on previous estimated return 
periods) could withstand future droughts and floods with increased frequency and magnitude. 
Such evaluation could guide government’s investment decisions to reduce future impacts by 
enhancing the resilience of current water infrastructure. In addition, better understanding is 
needed of hazard-impact linkages and the scale differences between this study and impacts 
on the ground (He et al. 2019). To promote actionable science and support decision making 
across scales, information such as from the GDFC needs to be integrated in the form of scalable 
and policy relevant Catalogue databases accounting for human influences. This is challeng-
ing and efforts to achieve this are at early stages, but a promising avenue is to harness recent 
advances in hyperresolution land surface modeling (Wood et al. 2011), high-resolution satellite 
remote sensing (Sheffield et al. 2018), data downscaling techniques (e.g., Maraun et al. 2010; 
He et al. 2016), and human–water interaction analysis (e.g., He et al. 2017; Wada et al. 2017), 
and to incorporate this into the existing seamless monitoring and predicting systems (e.g., 
Sheffield et al. 2014). However, case studies need to be carefully designed to better understand 
the potential of generalizing such integrated frameworks to large scales.

In this study, we focus on large-scale and long-term droughts and floods, as these hydro-
logical extremes tend to have a much larger societal impact, compared to traditional small-
scale and short-duration events. This is also limited by our modeling platform, in which VIC 
and CaMa-Flood are designed for hydrological simulations at large basin/floodplain scales, 
rather than small streams, lakes, and estuaries. Therefore, the GDFC should be applied with 
caution for floods if risk is to be assessed at local scale and short duration (e.g., a few hours) 
such as flash flooding. Further combination of the hazard information with local exposure 
and vulnerability information can provide a more complete picture of risk and the associated 
impact. This is also valuable for developing adaptation and mitigation strategies to withstand 
future elevated drought and flood risk and improve society’s resilience, if more individual 
and/or multiple pair-event case studies (Kreibich et al. 2017) are conducted. Such efforts can 
reveal general and transferable conclusions for both developed and developing countries, 
which have different coping capacities to droughts and floods even when they experience 
hazards of the same magnitude. Moreover, continued efforts are needed to incorporate the 
dynamic nature of drought and flood risk (e.g., how risks evolve in time) into the current static 
GDFC, so that future adaptation strategies can be designed in an adaptive way. It should be 
noted that current GDFC only provides deterministic information on drought and flood risk, 
but would benefit from incorporating understanding of uncertainties so that risk information 
can be utilized to identify strategies that are robust to a wide range of possible future scenarios 
(Hall et al. 2012). Quantifying such uncertainties is challenging, especially when accounting 
for uncertainties from different sources. This requires an improved understanding of known 
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and unknown physical processes related to drought and flood mechanisms (e.g., Sivapalan 
et al. 2005; Sheffield et al. 2012; Zhao et al. 2017), and whether current land surface models 
are suitable to simulate these processes within the full picture of the hydrological cycle, for 
example, not only focusing on streamflow and soil moisture simulation, but also on the role 
of terrestrial storage (e.g., Döll et al. 2014; Livneh and Hoerling 2016) or water management 
(e.g., He et al. 2017). Some of these aspects have been examined previously for the VIC model 
specifically, indicating that uncertainties in hydrological extremes tend to be dominated by 
the model structure, especially over snow-dominated and arid regions (e.g., Sheffield and 
Wood 2007; Sheffield et al. 2012; Lin et al. 2019), where physical processes related to snow (e.g., 
Sheffield et al. 2003; Pan et al. 2003; Xia et al. 2018) and evapotranspiration partitioning (e.g., 
Bohn and Vivoni 2016) are not well understood, and other key hydrological processes (e.g., 
groundwater dynamics, irrigation) are missing. Therefore, risk information compiled in the 
GDFC should be interpreted with caution over regions where these processes are important. 
There are other factors that make uncertainty quantification even challenging but worth 
exploring in future work. One of them is related to the quality (e.g., availability, coverage) of 
observational datasets, which are either used as input forcings to drive land surface models 
(such as precipitation data), or adopted to parameterize certain hydrological processes (e.g., 
soil properties data), or utilized for calibration and validation purposes (e.g., streamflow data). 
Uncertainties are likely higher in regions such as Africa where observational constraints on 
the model simulations are fewer. Future studies are warranted to explore this aspect and 
examine to what degree risk quantification is dependent on the quality and richness of these 
observations through regional comparisons (e.g., North America vs Africa). Nevertheless, one 
potential and emerging approach to tackle these issues is through ensemble frameworks, 
where scenarios with multiple forcings (e.g., Biemans et al. 2009; Müller Schmied et al. 2016), 
multiple land surface models (e.g., Nijssen et al. 2014; Dankers et al. 2014; Prudhomme et al. 
2014; Samaniego et al. 2018), and multiple parameterizations schemes (e.g., Wood et al. 1998; 
Zaherpour et al. 2018) can be combined together to explore the full spectrum of uncertainties 
of drought and flood risk.
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Appendix A: Enhanced hydrologic data
Enhanced global meteorological forcings. We have developed an updated and extended v3 
of the meteorological forcing dataset, PGF (Sheffield et al. 2006), from 1948 to 2016 at 3-hourly 
temporal resolution and 0.25° spatial resolution. PGF is a hybrid dataset of meteorologi-
cal data derived from the National Centers for Environmental Prediction (NCEP)–National 
Center for Atmospheric Research (NCAR) reanalysis and a suite of global observation-based 
products. Compared to the original PGF, precipitation in PGFv3 is scaled to match updated 
monthly products of the Climate Research Unit (CRU) TS3.24 that has fixed some of the wet 
biases observed in earlier versions (Trenberth et al. 2014). Corrections are also made to the 
reanalysis rain-day statistics that have been found to exhibit a spurious wavelike pattern in 
high-latitude wintertime (Sheffield et al. 2004b). Precipitation is disaggregated in space to 
0.25° by statistical downscaling using relationships developed with the GPCP (Adler et al. 
2003) daily product. Disaggregation in time from daily to 3 hourly is accomplished similarly, 
using the TRMM Multisatellite Precipitation Analysis (TMPA) 3-hourly real-time dataset. Other 
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meteorological variables (downward longwave radiation, specific humidity, and surface air 
pressure) are downscaled in space accounting for changes in elevation. Surface air tempera-
ture is scaled to match the CRU dataset in terms of monthly means and diurnal range. The 
reanalysis downward shortwave and longwave radiation products are adjusted for system-
atic bias using the NASA Langley Research Center Surface Radiation Budget (SRB) remote 
sensing–based dataset (Gupta et al. 1999) and spurious trends in the shortwave radiation are 
corrected using relationships with cloud cover. These data are available online (http://hydrology 
.princeton.edu/data/hexg/GDFC).

Enhanced land surface model simulations. The VIC (Liang et al. 1994, 1996; Cherkauer 
et al. 2003) land surface model (LSM) is utilized for the offline simulation of the terrestrial 
water cycle over the period 1948–2016 covering the global land area except for Antarctica. 
Over the past few decades, VIC has been widely used to understand statistical characteristics 
and underlying physics of hydrological extremes (e.g., droughts, floods, wet extremes) from 
regional to global scales (e.g., Pan et al. 2013; Sheffield et al. 2014; Livneh and Hoerling 2016; 
Zhan et al. 2016; Samaniego et al. 2018; Lin et al. 2019). Moreover, it has been demonstrated 
that VIC has similar performance compared to other LSMs according to recent intermodel 
comparisons (e.g., Prudhomme et al. 2014; Samaniego et al. 2018). In this study, we use ver-
sion 4.0.5 of VIC (an older but parallelized version), and run it in a water balance mode with 
a daily time step at a 0.25° spatial resolution. The model is forced with daily precipitation, 
maximum and minimum temperature, and wind speed obtained from the above updated PGF 
meteorological data. The VIC model requires a number of distributed parameter datasets as 
input. These include physical soil and vegetation parameters as well as a number of model 
specific parameters that generally require calibration. These parameters were taken from 
existing global simulations (Sheffield and Wood 2008a), which used parameters that were 
calibrated to large-basin streamflow observations. In this study, values of these parameters 
have been updated to take advantage of the recent SoilGrids global dataset of soil texture and 
properties (Hengl et al. 2014) and using new-generation pedotransfer functions (Tóth et al. 
2015). The distribution of vegetation cover is taken from the Advanced Very High Resolution 
Radiometer (AVHRR)-based, 1-km, global land-cover dataset of Hansen et al. (2000), which 
uses the University of Maryland (UMD) classification scheme, by calculating the fractional 
area of each vegetation type within each 0.25° grid cell. Vegetation parameters such as height 
and stomatal resistance are specified for each of 12 vegetation classes and are taken from 
Nijssen et al. (2001). Values of leaf area index (LAI) are specified for each vegetation type 
that exists in each grid cell by resampling the dataset of Myneni et al. (1997), which is based 
on AVHRR normalized difference vegetation index values. The LAI values are specified for 
each month but do not vary from year to year. We are currently in the process of updating 
these to the latest MODIS-based land classifications and to use the interannually varying 
Global Inventory Monitoring and Modeling System (GIMMS)-AVHRR LAI dataset, and incor-
porating a new global depth to bedrock datasets (Shangguan et al. 2017). Three soil layers 
were specified, which is the usual configuration for the current version of the VIC model: a 
thin top layer from which soil evaporation occurs, the thicker second layer is the main soil 
water storage layer, and a third layer from which base flow is generated. Following Nijssen 
et al. (2001), the layer thicknesses were initially specified as 0.3 and 0.7 m for the first and 
second layers, respectively. The third-layer thickness is taken from interpolated calibrated 
values from previous global model simulations (Sheffield and Wood 2007) and is generally 
between 0.25 and 4 m. The land–sea mask and gridcell elevations are taken from the National 
Geophysical Data Center (NGDC) ETOPO 2-min global elevation and bathymetry dataset (U.S. 
Department of Commerce 2006). The elevations are also used to define the elevation subgrid 
tiling used in the VIC model.
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Enhanced routing model. The physically based hydrodynamic model CaMa-Flood (Yamazaki 
et al. 2011) is utilized in this study to simulate continental-scale river discharge and flood 
inundation. CaMa-Flood offers several distinct advantages over existing routing models 
(e.g., Lohmann et al. 1998) due to its explicit representation of flood stage (e.g., water level 
and inundation area) in addition to river discharge for each grid cell, and more realistic 
hydrodynamic processes (e.g., backwater effects, bifurcation channels), yet still maintains 
high computational efficiency through the discretization of the entire river network into unit 
catchments. River network maps and flow direction maps in CaMa-Flood are generated by the 
Flexible Location of Waterway (FLOW; Yamazaki et al. 2009) algorithm using high-resolution 
hydrography datasets including HydroSHEDS for below 60°N and Global Drainage Basin 
Dataset (GDBD; Masutomi et al. 2009) for above 60°N. Flow direction has been modified 
to be consistent with a satellite-based river width dataset [Global Width Database of Large 
Rivers (GWD-LR); Yamazaki et al. 2014] and is used to derive the floodplain elevation profile. 
CaMa-Flood calculates river discharge and flow velocity using the local inertial equation 
proposed by Bates et al. (2010) and is forced by gridded daily runoff simulated from VIC 
LSM at the 0.25° spatial resolution. Floodplain inundation in CaMa-Flood is approximated 
at the unit-catchment scale through a subgrid parameterization scheme, which constructs a 
relationship between the inundation area and water level based on the floodplain elevation 
profile. Model spinup is repeated twice with the same year (1948) of runoff forcing to reach 
steady state conditions. We exclude the first two years (1948–49) from the analysis to avoid 
any spurious effects.

Appendix B: Statistical and risk analysis
Standardized indices. We identify large-scale hydrological extremes from both meteorological 
and agricultural perspectives based on two widely used indices: standardized precipitation 
index (SPI; WMO 2012) and SMPct (Sheffield et al. 2004a). SPI measures the standard depar-
ture of precipitation from the long-term climatology for an aggregated period (e.g., monthly, 
seasonal, annual). Calculation of SPI involves two steps. The first step is to fit precipitation 
time series at each grid cell with a gamma distribution:

 f P P e P

( ; , )
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�
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�
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�

where P is the running series of aggregated precipitation; α is the shape parameter and β is the 
scale parameter, both of which can be estimated through the maximum likelihood estimation 
(MLE) method; Γ(⋅) is the gamma function. The second step is to transform the cumulative 
probability of the fitted gamma distribution to a standard normal distribution (with mean zero 
and variance one). For an observed P at a given time scale, SPI is calculated as the number of 
standard deviations away from the median P with negative and positive values representing 
precipitation deficit and surplus, respectively. Following the widely used classification cat-
egory (McKee et al. 1993), we define drought and large-scale flood (also referred to as pluvial) 
at a grid cell if the SPI is below or above the threshold of −1.0 and 1.0, respectively. Despite 
the advantage of convenient computation, the SPI only reflects one part of the land surface 
hydrologic cycle (i.e., precipitation) and ignores other important hydrologic processes includ-
ing evapotranspiration (ET) and runoff (R). Soil moisture (SM)-based indices can complement 
this, as SM reflects the aggregated behavior of land surface water balance among P, ET, and 
R, and is closely related to agricultural activities (e.g., plant growth) (Sheffield et al. 2009). 
We estimate daily SM over the entire soil column based on VIC simulations, average it to a 
monthly time scale and calculate SMPct at each grid after fitting an empirical distribution. 
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Transforming SM into a percentile space enables us to compare the deficit and surplus of 
SM relative to its seasonal climatology across locations with different climate conditions 
(Sheffield et al. 2004a). A threshold of 20th percentile is used to define drought conditions, 
as suggested by the U.S. Drought Monitor. On the flip side and analogous to large-scale wet 
extremes, pluvials are defined in a conceptual way for grid cells with SMPct exceeding the 
80th-percentile threshold.

Run theory to estimate drought and pluvial frequency. We use run theory to estimate the 
event (drought or pluvial) frequency at the pixel level (Yevjevich 1972; Sheffield and Wood 
2007) for different duration classes Dc, which are defined as follows:

 D
D

D

P4 6
4 6

0

0

� � �

�
�

�
, short term:

SI SI for drought

SI SI for pluvial
��
�
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SI SI for pluviaal

�
�
�

,

where SI is the standardized index (either SPI or SMPct; see details in the previous section), 
and SI0

D and SI0
P is the event threshold for drought and pluvial, respectively. We count the total 

number of runs (defined as consecutive time series of SI below and above the threshold SI0
D 

and SI0
P for drought and pluvial, respectively) in the study period (1950–2016) to calculate the 

frequency of occurrence for short- (D4–6) and medium-term (D7–12) duration events. We then 
inverse the frequency to get the corresponding return periods.

Clustering algorithm for drought and pluvial identification. We implement an existing 
and well-tested approach for tracking spatially contiguous drought and pluvial events and 
quantifying their characteristics in time and space based on the severity–area–duration (SAD) 
algorithm (e.g., Andreadis et al. 2005; Sheffield et al. 2009; Zhan et al. 2016). SAD has the 
advantage of tracking how each individual event cluster merges or breaks at each time step. 
It links multivariate event characteristics (i.e., severity, spatial extent, duration) through the 
following equation:

 S
D

� � ��
1

SI
SI {SPI,SMPct},,

where S is severity, SI is the standardized index (either SPI or SMPct; see details in appendix B, 
“Standardized indices” section) that defines hydrological extremes (e.g., drought or pluvial), 
and D is the duration in months. At each time step, the maximum spatial extent is calculated 
by repeatedly adding surrounding pixels with a constant increment (80 model pixels) to the 
center of the cluster until all contiguous pixels exceeding the threshold are included (see 
details in Andreadis et al. 2005; Sheffield et al. 2009). For a given duration, the maximum 
severity under each spatial extent forms the SAD curve. The upper bound delineated from all 
SAD curves forms the SAD envelope curve, which characterizes the event severity over an area 
given the specified duration. Two critical thresholds have to be predefined in SAD to identify 
the spatial clusters, including the index threshold to detect the pixel-level extremes (see de-
tails in “Standardized indices” section) and a minimum cluster size threshold Ngrids to ensure 
a reasonable number of spatially connected pixels. In this study, we set Ngrids to be 150 grids 
(approximately 3.75 × 105 km2), a value suggested by the original SAD algorithm (Andreadis 
et al. 2005) and is recently tested by Zhan et al. (2016).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/25/22 03:16 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M AY  2 0 2 0 E530

Stationarity of drought and pluvial events. We estimate the time-varying occurrence rate λt 
of drought and pluvial events through a nonparametric Gaussian kernel technique (Mudelsee 
et al. 2003; Mudelsee 2014) based on the following equation:

 � �
��

�
�

�
�
��1

h
K t T

hi

N
i ,

where h is the bandwidth, Ti is the occurrence date for the event (drought or pluvial) i 
(i = 1, 2, 3, …, N), and K is the Gaussian kernel to weigh the observed event dates. We select a 
bandwidth of 10 years for kernel smoothing to reflect the decadal variability. To reduce the 
bias of estimating λt near boundaries, we generate pseudodata outside of the original time 
series with a time interval of 3 h for both left and right boundaries, yet still maintain the same 
empirical distribution based on the “reflection” rules suggested by Cowling and Hall (1996). 
Confidence intervals of λt are estimated using a bootstrap technique by randomly sampling 
the event occurrence dates 2,000 times with replacement. We calculate the Cox–Lewis statistic 
(Mudelsee et al. 2003) to test whether λt exhibits a monotonic trend with the null hypothesis 
of constant λt over the study period (1950–2016).

Copula-based risk analysis. Risk assessment of droughts and pluvials can be greatly enhanced 
if the dependence structure of severity S, area A, and duration D can be well represented. 
However, such high dimensional dependence modeling becomes inflexible due to the “curse 
of dimensionality.” In addition, dependence structures between different pairs of variables 
can be very different. For instance, one pair may have tail dependence (extreme dependence) 
and other pairs may have symmetric or asymmetric dependence. Recent development of vine 
copulas (pair-copula constructions) can overcome these limitations as it can decompose the 
multivariate copulas into pair copulas based on hierarchical graphical models (Bedford and 
Cooke 2002; Kurowicka and Cooke 2006; Cooke et al. 2015). Given these advantages, the vine 
copula has been widely applied in hydrology recently (e.g., Hao and Singh 2016; Wanders et al. 
2017; Bevacqua et al. 2017). In this study, we utilized the R package VineCopula to optimize 
the vine structure (either C-vine or D-vine) through the determination of the most appropriate 
bivariate copula family and its corresponding parameters (see details in Schepsmeier et al. 
2012). We test seven parametric distributions (exponential, gamma, generalized extreme 
value, generalized Pareto, lognormal, Weibull minimum, and Weibull maximum) to find the 
most suitable fit of the marginal distribution for S, A, and D. As D is discrete (integer values 
with the unit of month) and has repeated values (called “ties”), the rank of data points is not 
unique anymore, making the multivariate analysis ambiguous (e.g., the fit of the marginal 
distribution). To overcome this issue, we add random noise (called “jittering”) to the original 
discrete datasets and generate 200 continuous pseudosamples following the procedures sug-
gested by De Michele et al. (2013). For each random sample, we first identify the best-fitted 
distribution and count how many times each distribution is selected. The distribution with the 
highest selection frequency is then identified as the best-fitted distribution for D. After fitting 
the three-dimensional joint distribution function using the vine copula, the joint nonexceed-
ance probability between S and A conditional on D can be calculated as
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where us, ua, ud = FS(s), FA(a), and FD(d) are marginal distributions for S, A, and D; CSA and CSAD 
are copula functions fitted from the vine copula. Different from the conventional univariate RP, 
here we calculate the so-called Kendall’s return period (KRP) TSA|D, to ensure the mathematical 
consistency for multivariate events as suggested by Salvadori et al. (2011):

 
T

K qSA D
C

|
( )

,�
�
�

1  
(B2)

where µ = N/n is the average interarrival time; N is the number of years; n is the number of 
events, K q p qC SA D( ) :

|
� ��� ��  is the Kendall’s survival function, and q– is the survival Kendall’s 

quantile. For any return period TSA|D (e.g., 100 years), q– can be calculated through the inver-
sion of K–C

– from Eq. (B2):
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Substitute q– into Eq. (B1) and calculate the quantiles of S and A based on their marginal dis-
tributions, we can get a bundle of isolines, which represent a combination of realizations of 
S and A that share the same RPs (Salvadori et al. 2013).
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